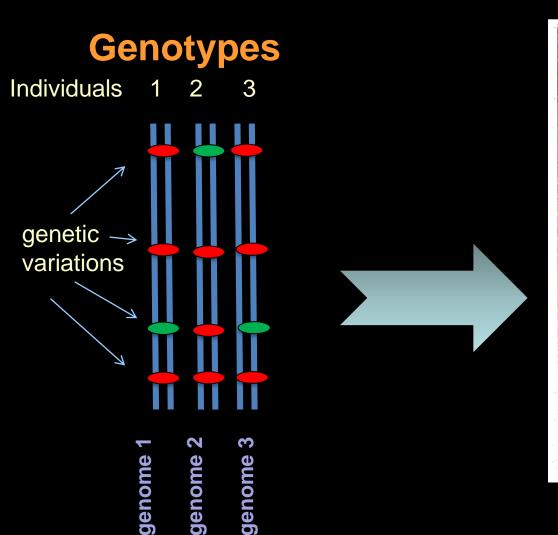
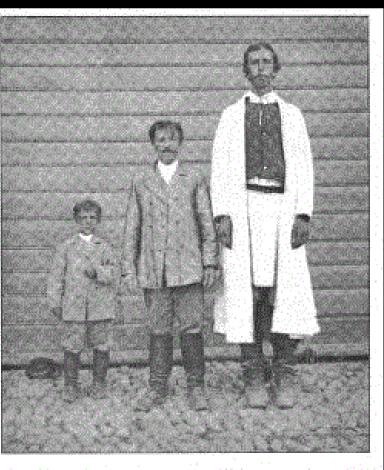


Genetics variations – effects, propagation, and buffering

Teresa Przytycka
NIH / NLM / NCBI

Phenotypes

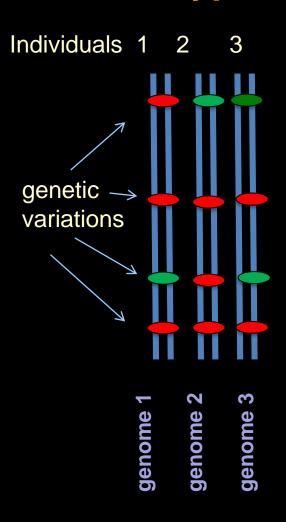




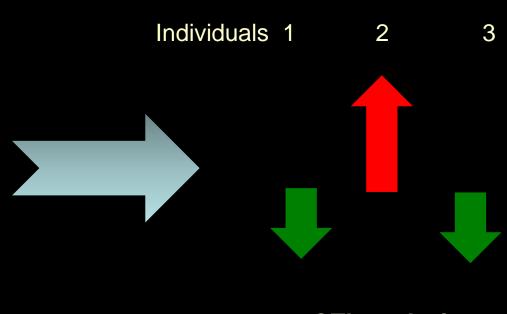
Journal "Wisla" (1902)

Molecular Phenotypes

Genotypes



Gene Expression of gene g

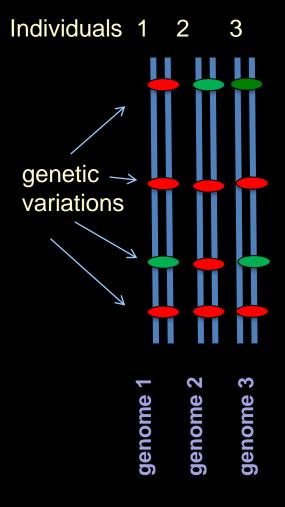


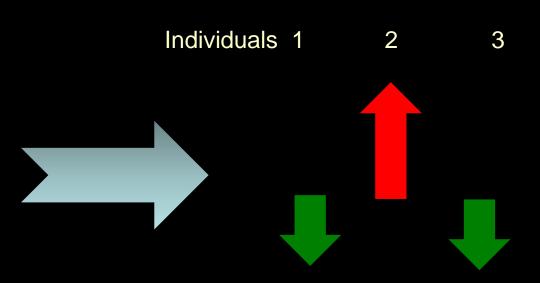
eQTL analysis

Molecular Phenotypes

Genotypes

Gene Expression of gene g

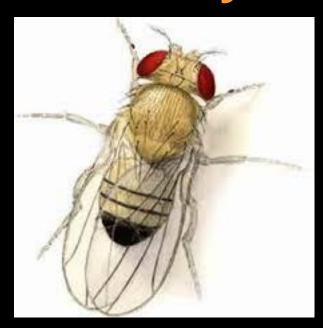




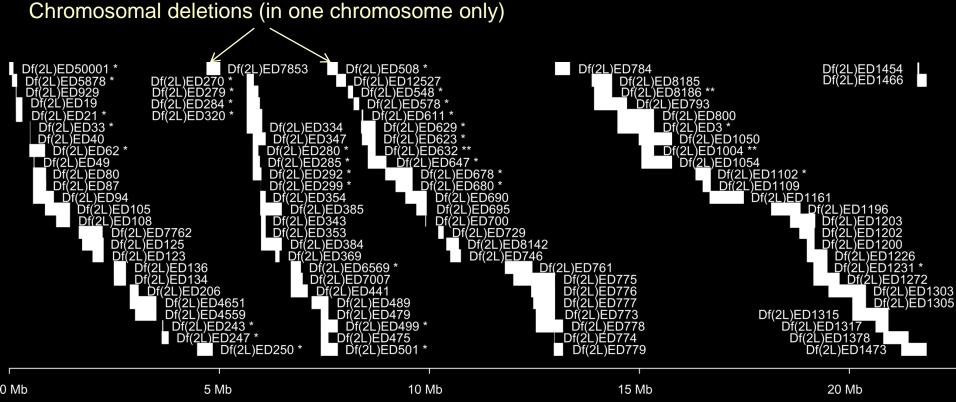
No one-to-one relation in most cases

- Pathways rather than individual genes
- Drivers versus passengers
- Role of context and stochastic variations

Lessons from engineered genetic perturbations in Fly



Engineered chromosomal deletions



Left arm of chromosome 2

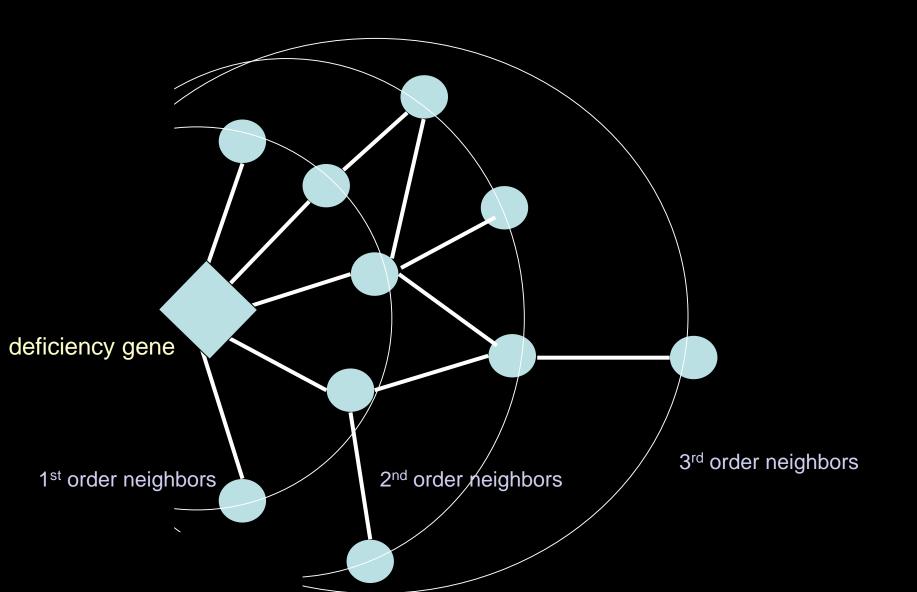
Engineered chromosomal deletions

Chromosomal deletions (in one chromosome only)

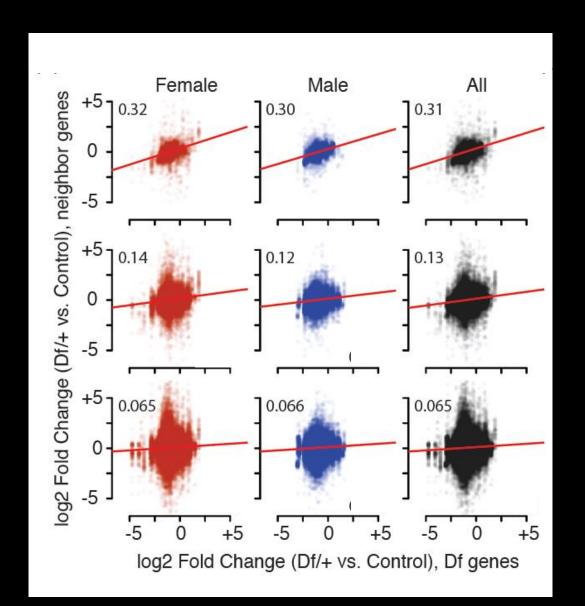
Left arm of chromosome 2

Expression of deficiency genes is reduced by nearly half (but not exactly and not always)

What is the impact on network neighbors?



Expression changes propagate through the network up to the second order neighbors

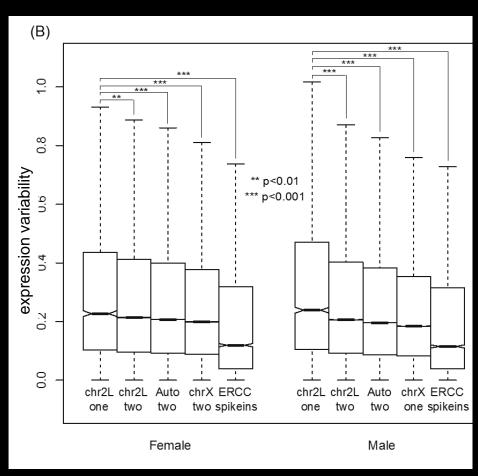


First order neighbors

Second order neighbors

Third order neighbors

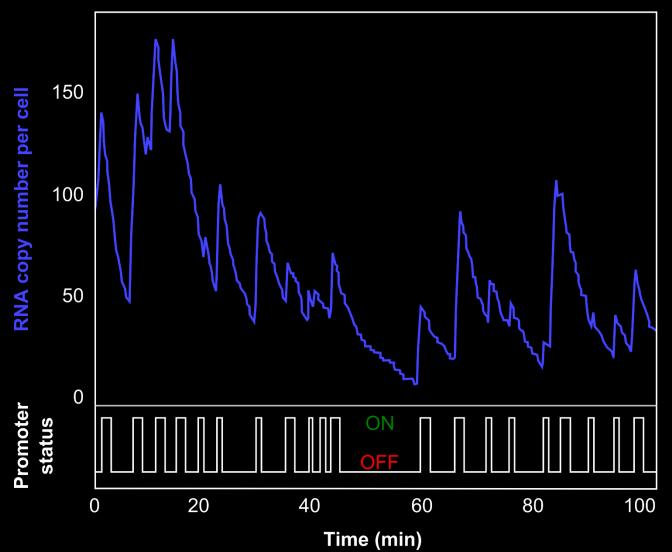
Expression variation of deficiency genes is higher than other genes



Measurement of variability

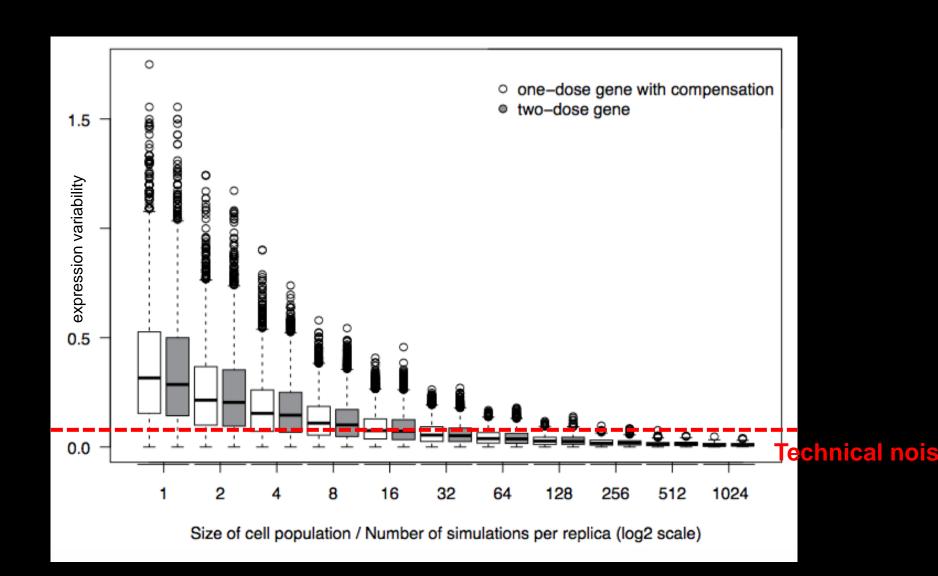
Delta = abs(e1-e2) /ave(e1,e2) e1,e2 - expression in experiment 1 and 2

Expression bursts as major contributor to single cell expression noise

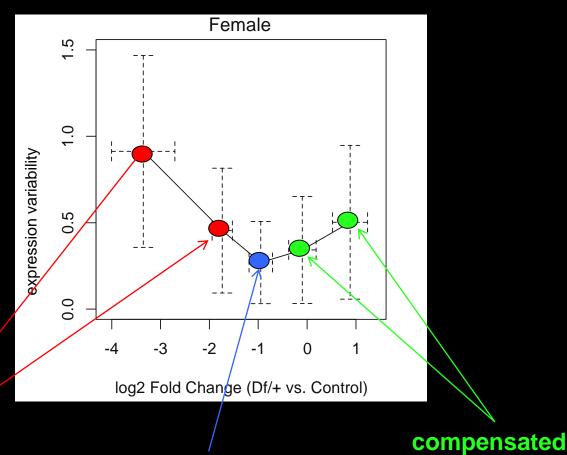


Prediction from the model – increased copy copy number reduces

Single cell model does not explain variability in expression of deficiency genes



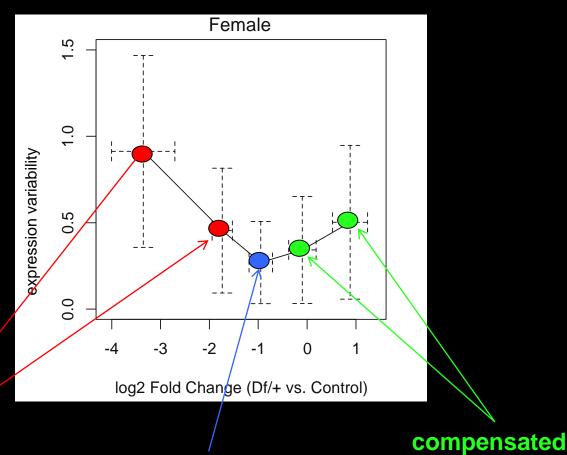
Deficiency genes with compensated/collapsed expression are more noisy



1/2 of wild-type expression (expected)

collapsed

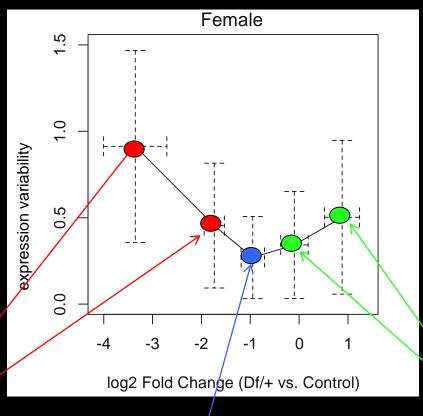
Deficiency genes with compensated/collapsed expression are more noisy



1/2 of wild-type expression (expected)

collapsed

Deficiency genes with compensated/collapsed expression are more noisy



Hypothesis:

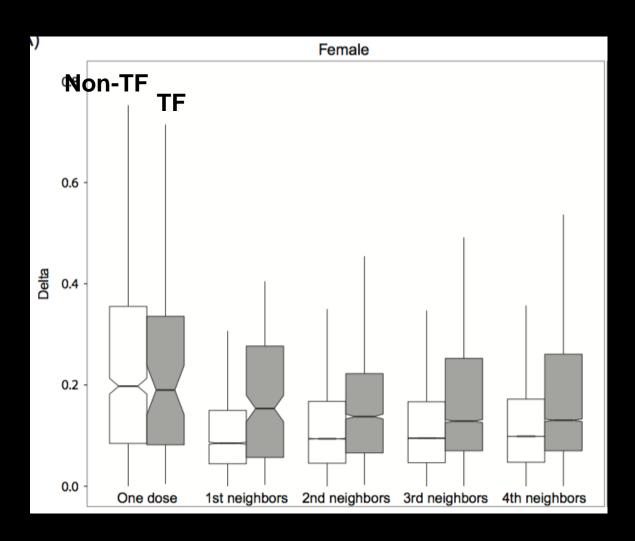
dosage compensation and expression noise are related to interaction context

collapsed

compensated

1/2 of wild-type expression (expected)

Expression variations propagate across regulatory network



Why this is relevant

Identification of Small Exonic CNV and Application to Autism Spectrum Disorder from Whole-Exome Sequence Data Christopher S. Poultney, 1,2 Arthur P. Goldberg, 1,2,3 Elodie Drapeau, 1,2 Yan Kou, 1,4 Christine Stevens, 5 Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Hala Harony-Nicolas, 1,2 Yuji Kajiwara, 1,2 Silvia Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie 5,6 Mark I Dalv 5,8 Avi Ma'avan 4 Menachem Fromer 2,9 Karola Rehnström 6,7 Aarno Palotie Christopher S. Poultney, 1,2 Arthur P. Goldberg, 1,2,3 Elodie Drapeau, 1,2 Yan Kou, 1,4 Christopher S. Poultney, 1,2 Arthur P. Goldberg, 1,2 Silvia De Rubeis 1,2 Simon Durand 1,2 Christopher S. Poultney, 1,2 Arthur P. Goldberg, 1,2 Silvia De Rubeis 1,2 Simon Durand 1,2 Christopher S. Poultney, 1,2 Arthur P. Goldberg, 1,2,3 Elodie Drapeau, 1,2 Silvia De Rubeis 1,2 Simon Durand 1,2 Christopher S. Poultney, 1,2 Arthur P. Goldberg, 1,2,3 Elodie Drapeau, 1,2 Silvia De Rubeis 1,2 Simon Durand 1,2 Christopher S. Poultney, 1,2 Arthur P. Goldberg, 1,2,3 Elodie Drapeau, 1,2 Silvia De Rubeis 1,2 Silvi Hala Harony-Nicolas,^{1,2} Yuji Kajiwara,^{1,2} Silvia De Rubeis,^{1,2} Simon Durand,^{1,2} Cnristine Steventar Rehnström,^{6,7} Aarno Palotie,^{5,6} Mark J. Daly,^{5,8} Avi Ma'ayan,⁴ Menachem Fromer,^{2,9} Rard Joseph D. Buybaum^{1,2,3,9,10,*}

and Joseph D. Buxbaum1,2,3,9,10,*

- Top downloaded articles
- · Our comprehensive search

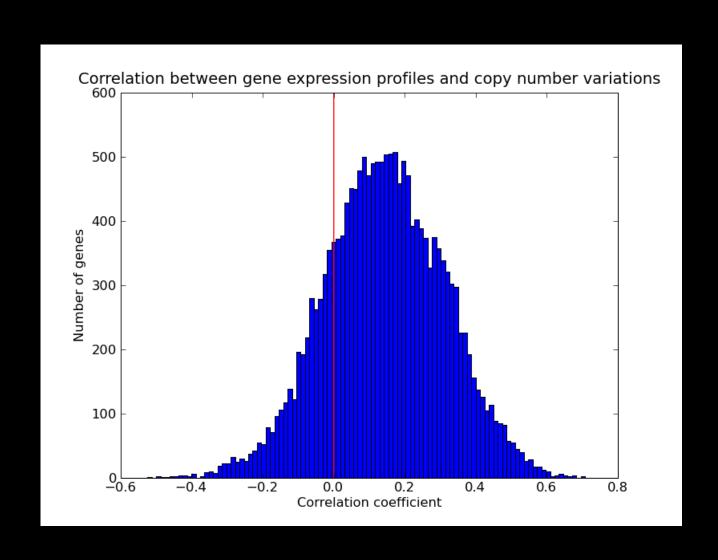
Human Copy Number Variation and Complex Genetic Disease

Santhosh Girirajan, Catarina D. Campbell, and Evan E. Eichler

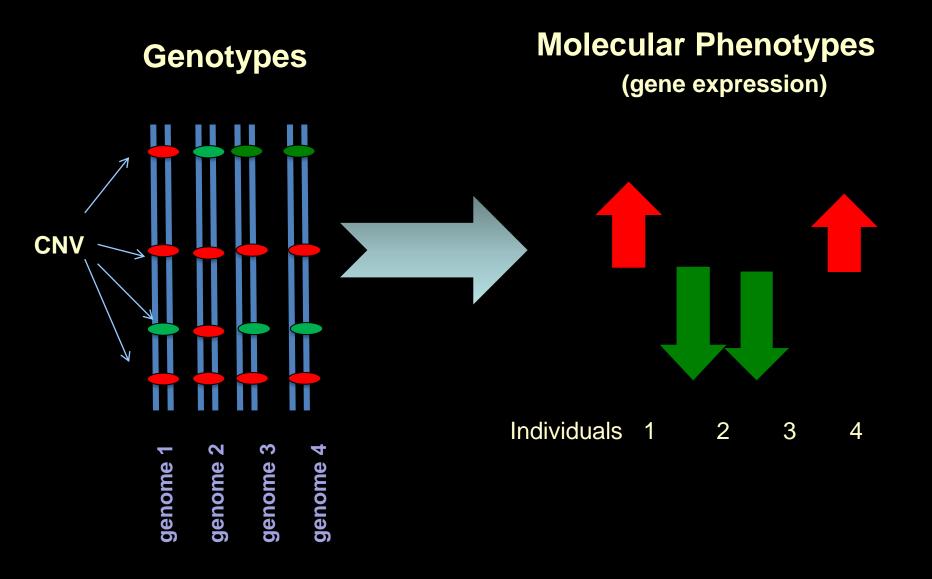
Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195; email: sangi@u.washington.edu, cdcamp@u.washington.edu, eee@gs.washington.edu

Copy number variations and propagation of expression changes in cancer

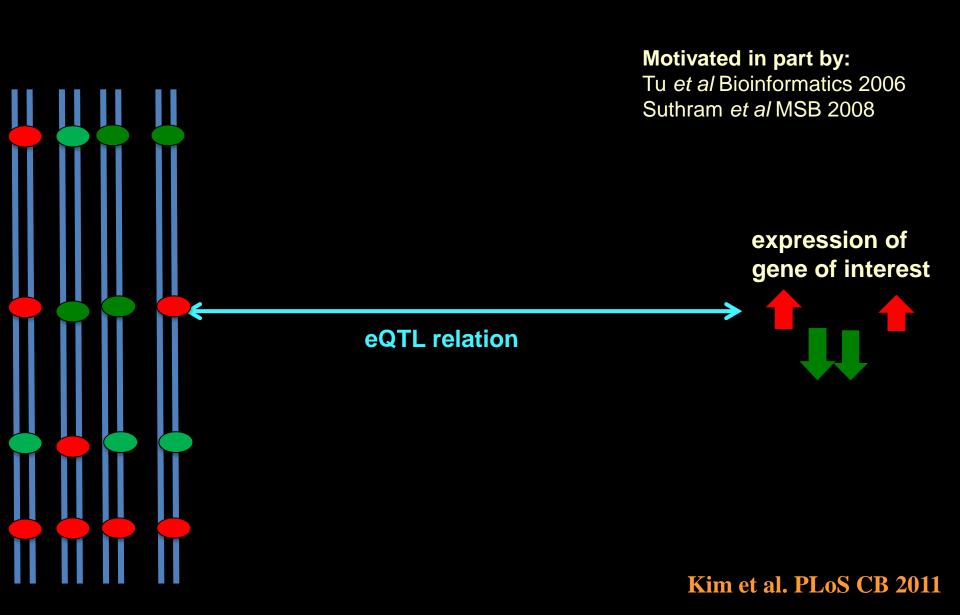
Positive correlation between gene copy number and gene expression in cancer (GBM)



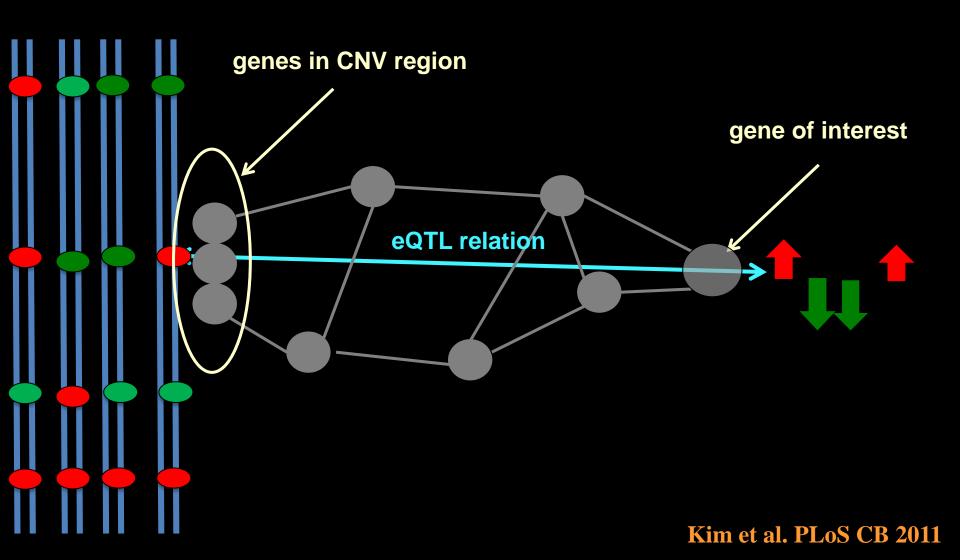
Using propagation of expression perturbation to study genotype-phenotype relation



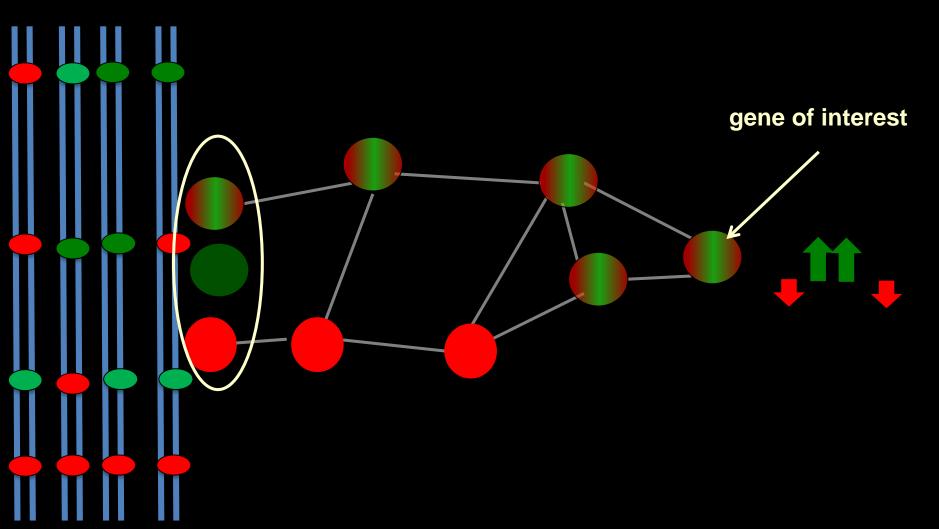
The eQTL-net method



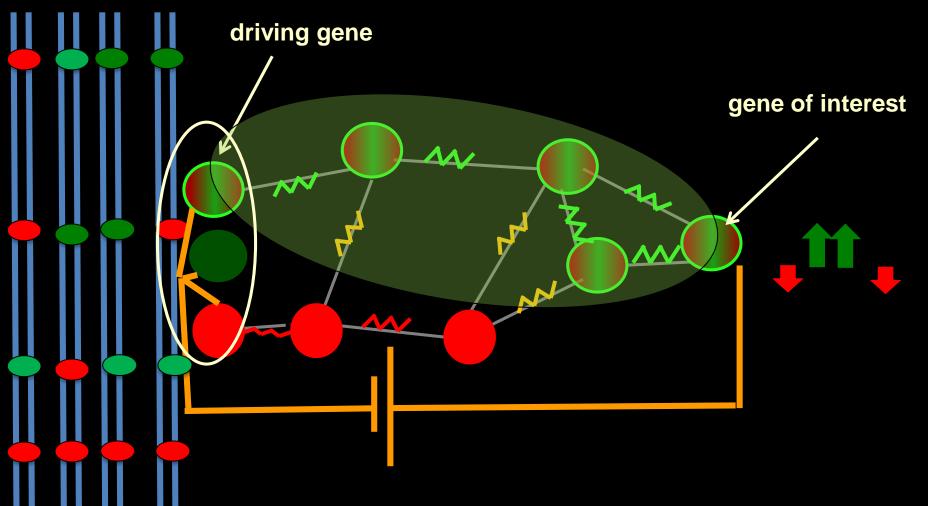
Explaining eQTL associations by propagation of expression changes



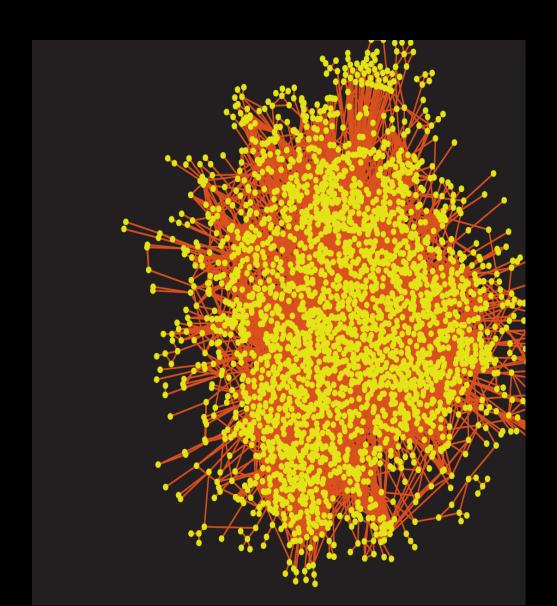
Explaining eQTL associations by propagation of expression changes



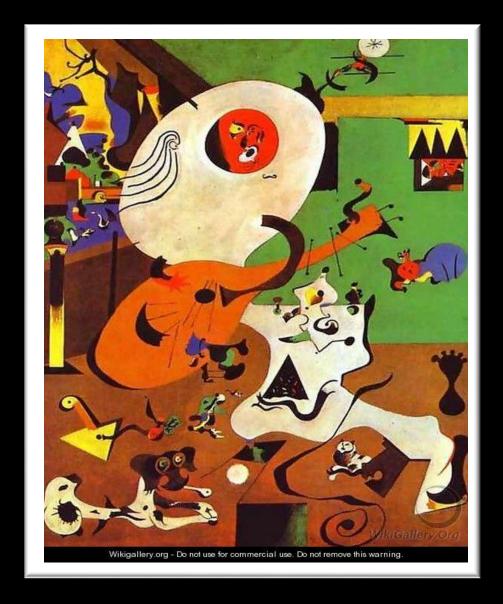
Identification of information propagation pathways and driver genes



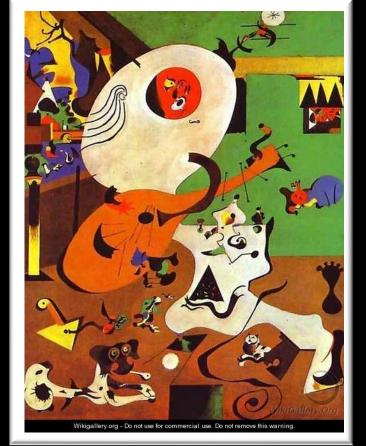
How to interpret these pathway in the context of throughput interaction networks?



How to interpret this painting?



Details are perturbed but relationships remain



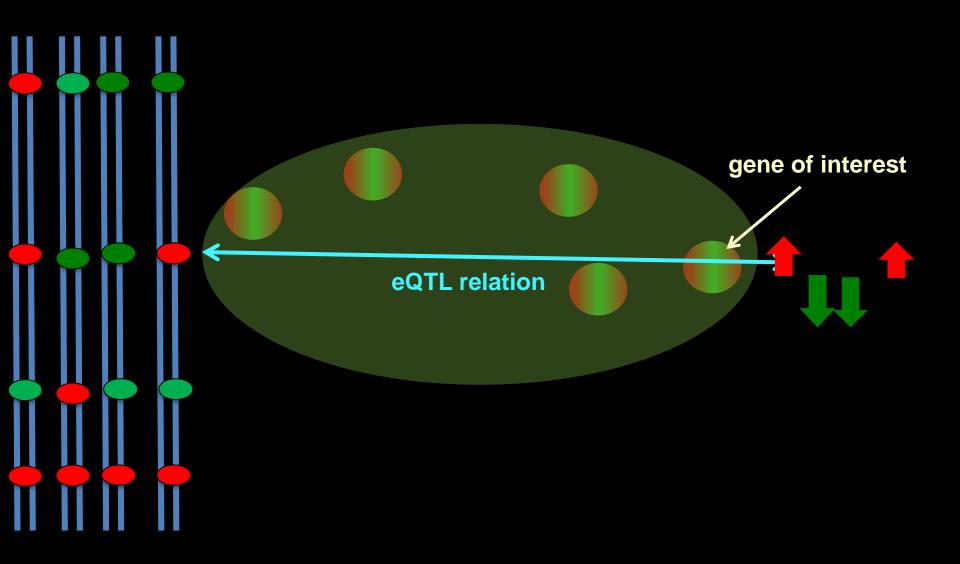
The Lute Player, Hendrick Maertensz Sorgh (1610-1670), Rijksmuseum, Amsterdam (public domain)

Dutch Interior 1, Joan Miro' (1893–1983)

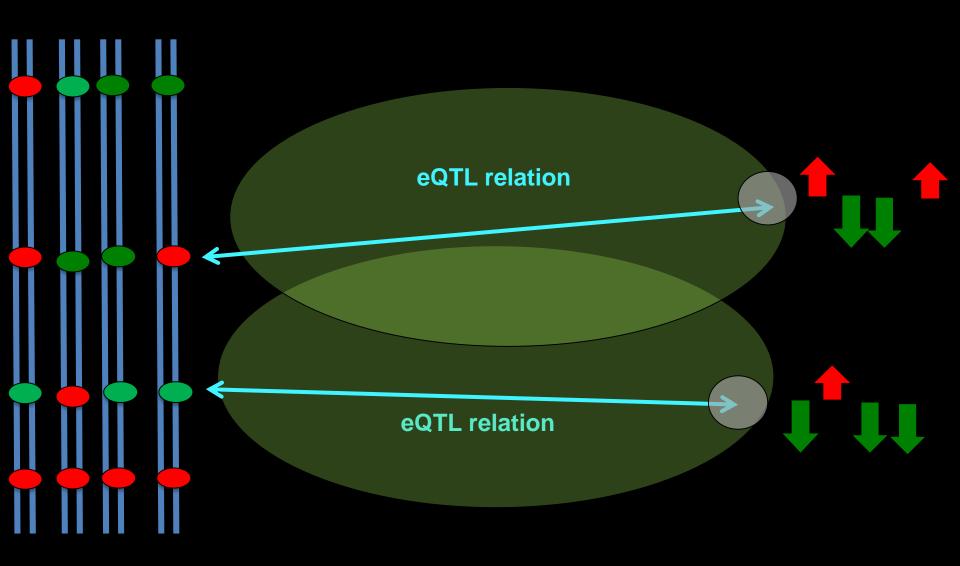
Museum of Modern Art, New York

© 2012 Successió Miró / Artists Rights Society (ARS), New York / ADAGP, Paris (used with ARS permission).

Considering information propagation pathway as a bag of genes



Typically we use many genes as a molecular phenotype- repate the process for all of them



Results

Driving Copy Number alterations

EGFR, PTEN, RB1, GBAS, TP53, CDKN2A,.....

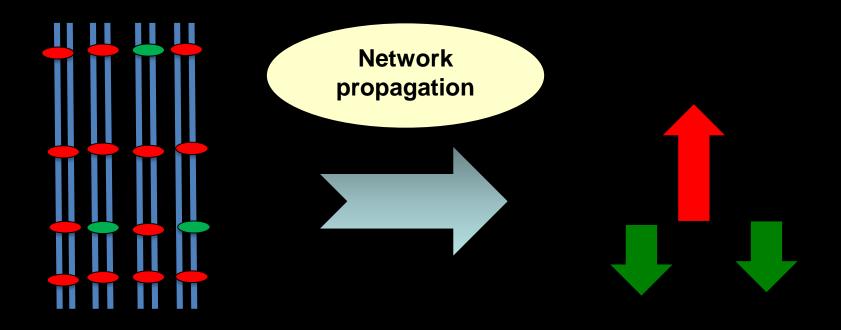
Reoccurring pathways

Cell cycle, EGFR, RAS, Cell proliferation, Insulin Signaling, DNA repair, Splicing, SMAD (nuclear translocation), lipid storage

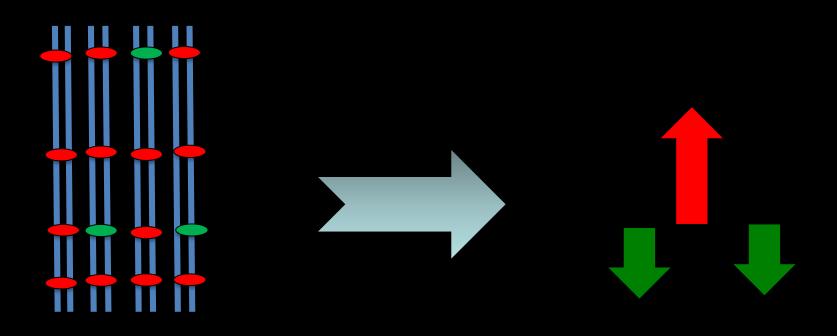
Hubs

Myc, E2F1, CREBBP, SP1, Jun,...

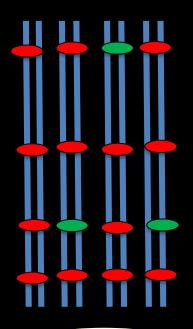
Utilizing Networks for Understanding Genotype-Phenotype relations



What can we do about perturbations that do not necessarily cause expression change in network neighbors?



Finding mutated/dysregulated subnetworks



Main principle:

If different perturbations have similar effects the perturbations should be related – belong to the same subnetwork

Challenge:

Cancer heterogeneity

mutated / dysregualted subnetworks

Module Cover Approach

Optimization problem:

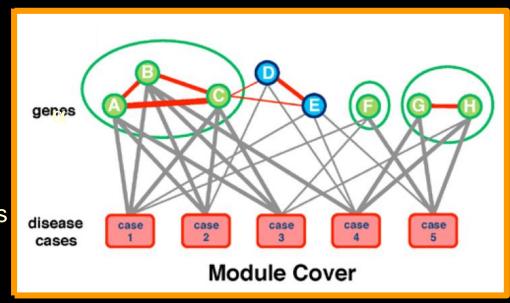
Motivated in part by: Ulitsky et al 2008

Find minimal cost set of modules so that each disease case is covered at least k times

Cost is a determined by:

A similarity of genes within modules (application dependent)

number of modules

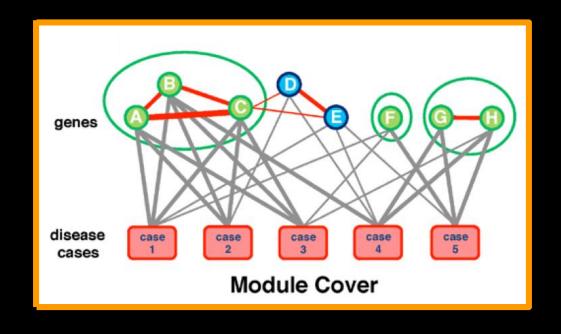


Advantage: different patients can be covered by different subnetworks

Application 1: Glioblastoma Analysis

Cost is a function of:

- Similarity within modules
 - Distance in network
 - Expression similarity (similarity of eQTL profiles)
- number of modules (parameterized penalty)

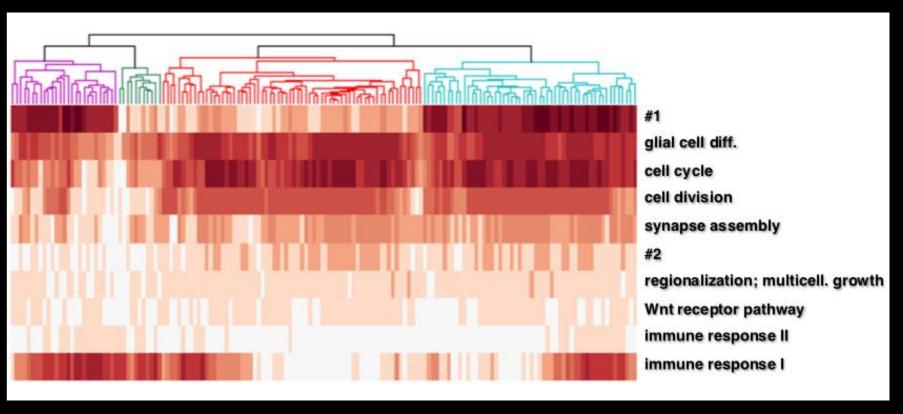


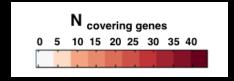
Advantage: different patients can be covered by different subnetowrks

modules

Modules capture patients heterogeneity/subtypes

cases





Application 2: Extension to mutual exlusivity

Mutual exclusivity of cancer drivers

```
Thomas et al 2007
Ciriello, et al., 2012;
Vandin, et al., 2012;
Szczuret et.al, 2014, 2015
Leiserson, et al., Vadin et al. 2013,2014,2015;
Kim et al. 2015
Constantinescu et al. 2015
```

patients

mutations in gene 1

Mutations in gene 2

Proposed explanations

- any of the two drivers alone gives sufficient growth advantage
- negative genetic interactions between drivers

Interesting property

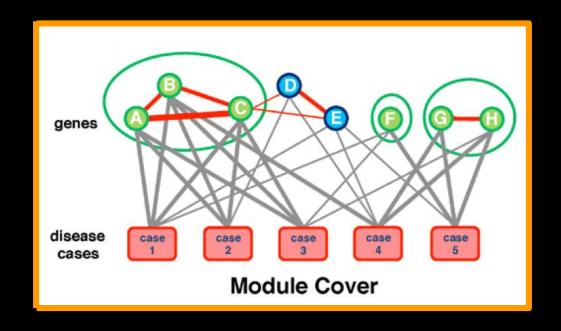
Mutual exclusive pairs are often in the same pathway

Application 2: Subnetworks dysregulated across many cancer types

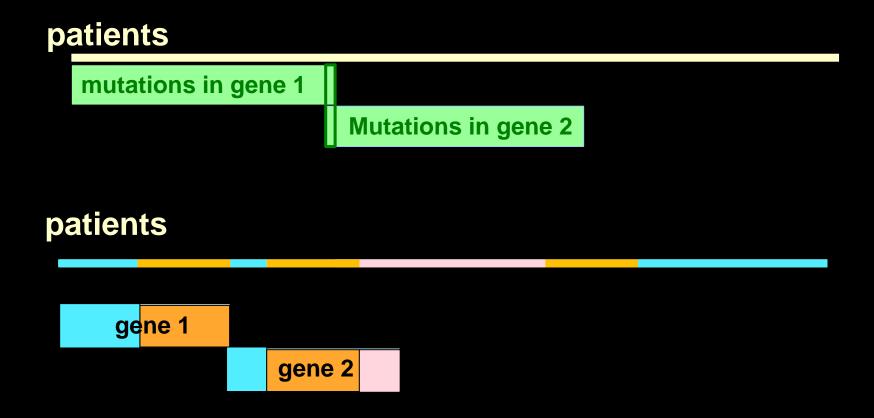
Cost is a function of:

- Similarity measure
 - Distance in network
 - Mutual Exclusivity Score

number of (parameterized penalty)

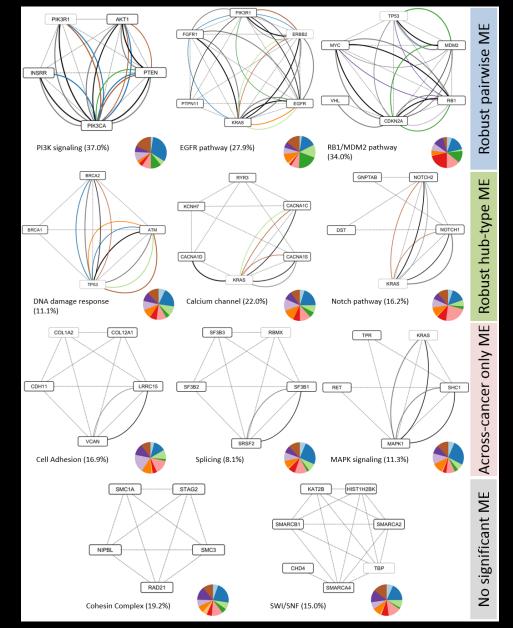


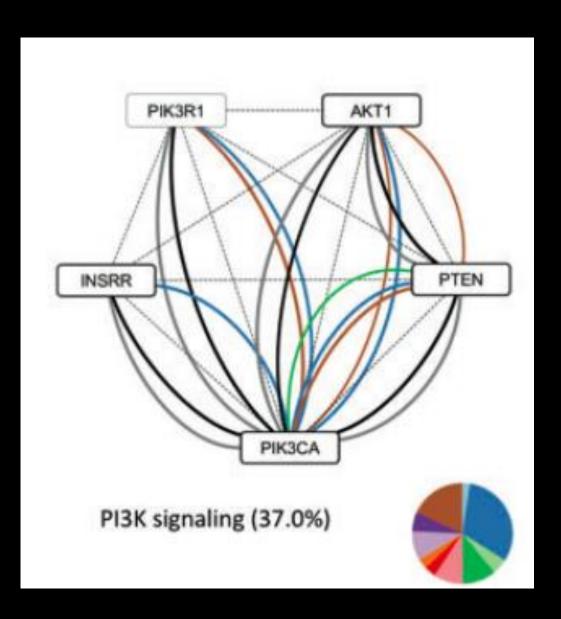
Defining Mutual exclusivity in PanCancer setting

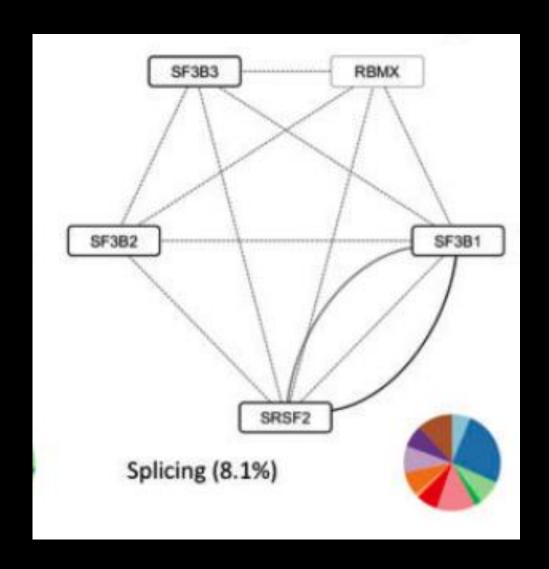


Kim et al. IMSB 2015 – classification of ME types in context of PanCancer and properties of different ME types

MEMCover (Mutual Exlusivity Module Cover) Finds subnetwokrs dysregulated across cancer types



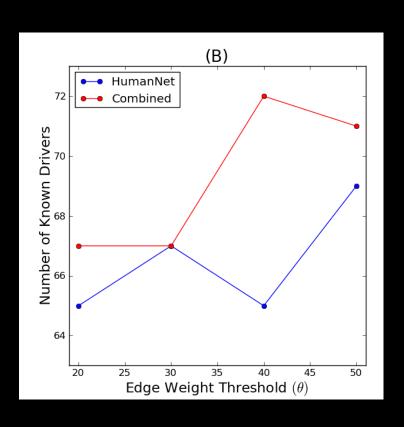


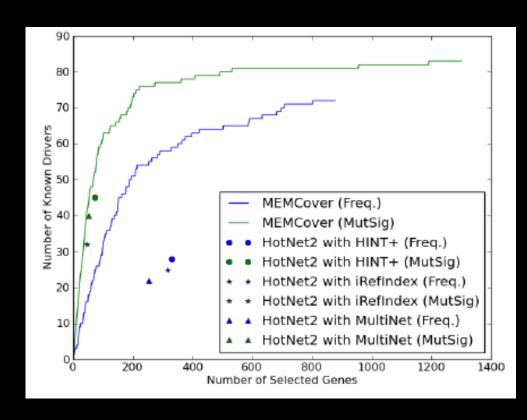


MEMCover modules are enriched in cancer drivers

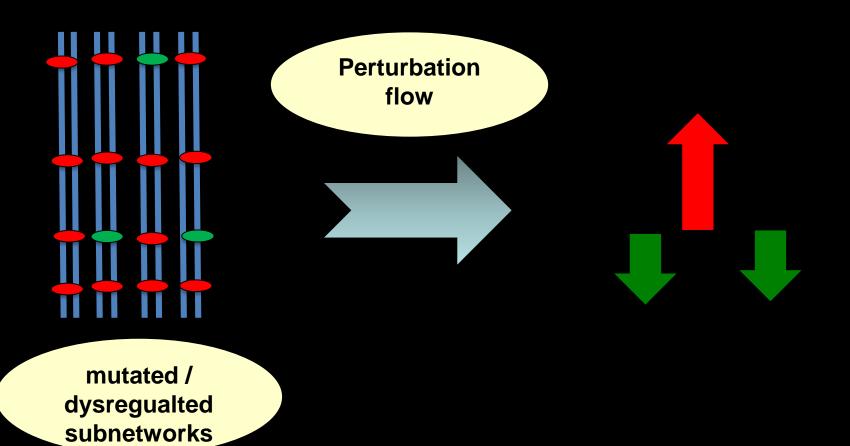
Compared to Module Cover without ME

Compared to HotNet2

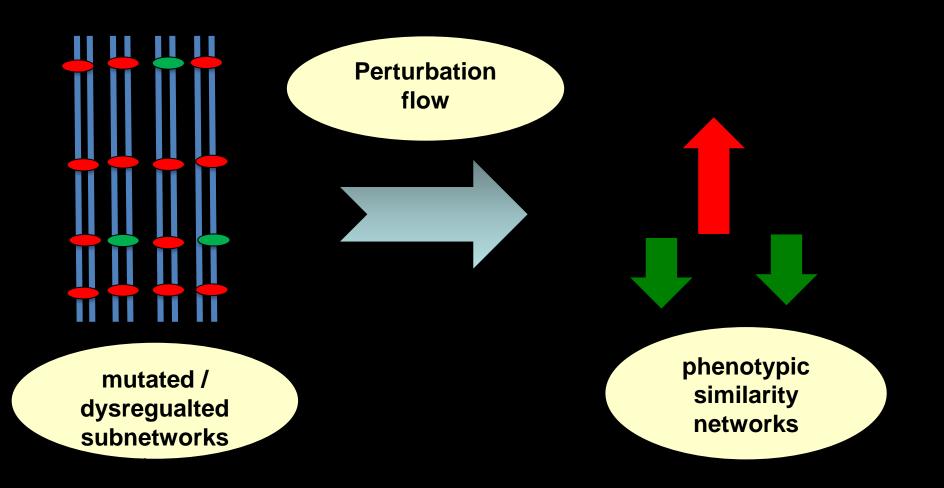




Utilizing Networks for Understanding Genotype-Phenotype relations



Patient/phenotypic similarity networks



Motivation – simultaneous utilization of multiple genotypic/causal and phenotypic data types

Genotypic/ causal factors

mutations,

CNV

methylation,

Sex, age, environment

Phenotypic properties

gene expression

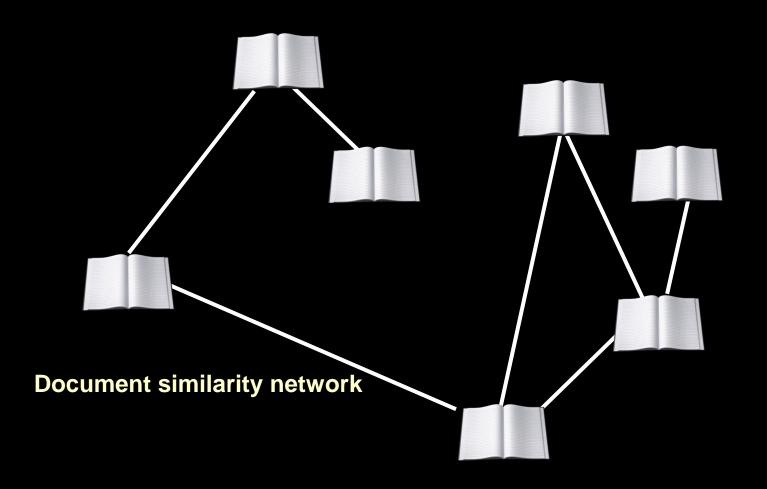
response to drugs

survival time

pathology features

Idea: Construct phenotype similarity graph and explain it connectivity using genotypic features

Topic model: Assuming that each document is a mixture of topics - identify topics and the words that define them

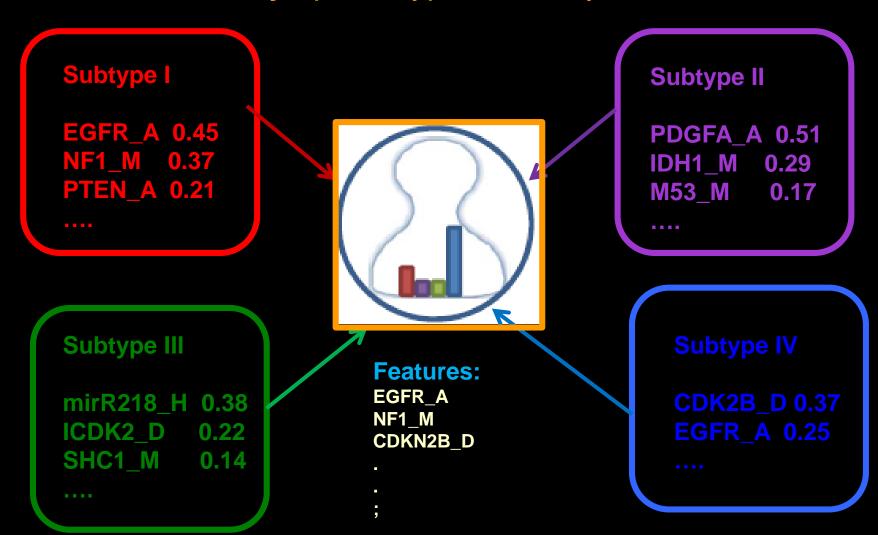


Chang J, Blei DM: Hierarchical Relational Models for Document Networks. Ann Appl Stat 2010, 4(1):124-150.

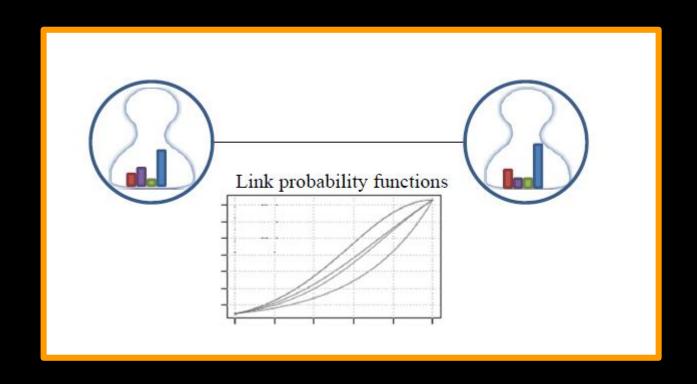
Topics – disease subtypes

Words - possible causes (mutations, CNV, miRNA)

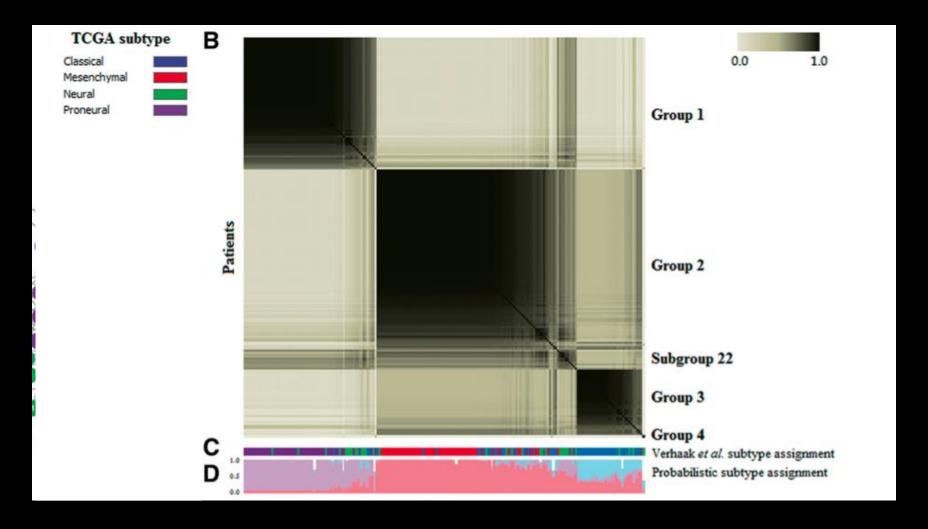
Documents similarity – phenotypic similarity (gene expression)



Similar patients are to be explained by similar subtypes mixtures



Co-occurrence of patients in the same subtype (based on 1000 topic models)



Observation: No separate Neural group

Loss of Neural group is not surprising

Varhaak et al. Classification

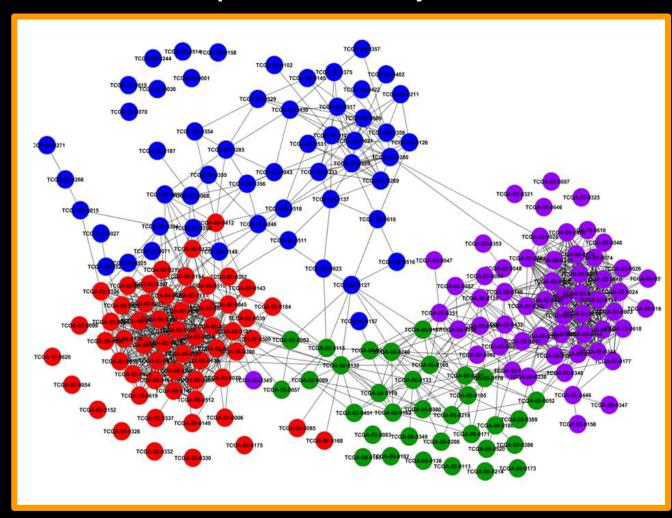
Mesenchymal

Classical

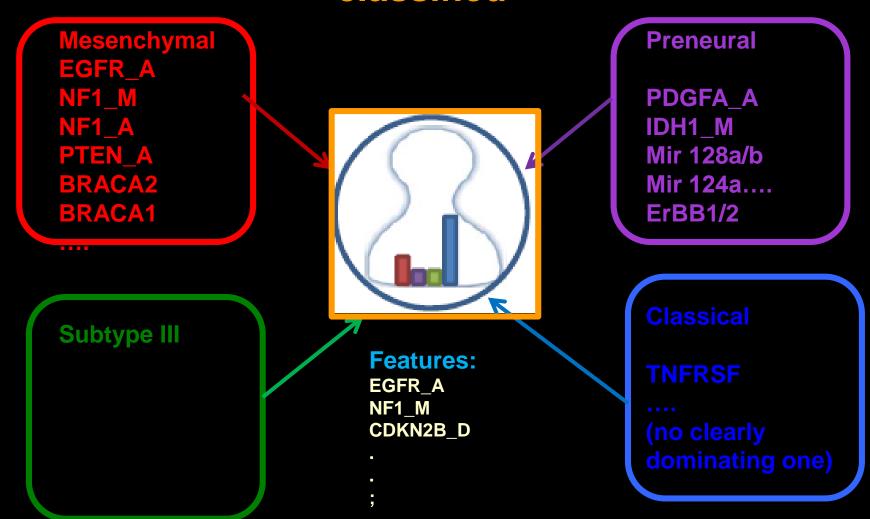
Proneural

Neural

expression similarity network for GMB



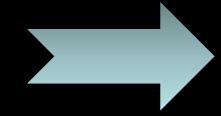
Subtypes are defined by a distribution of words (mutations) – new patients can be easily classified



Summary – these are complementing approaches

eQTL-net

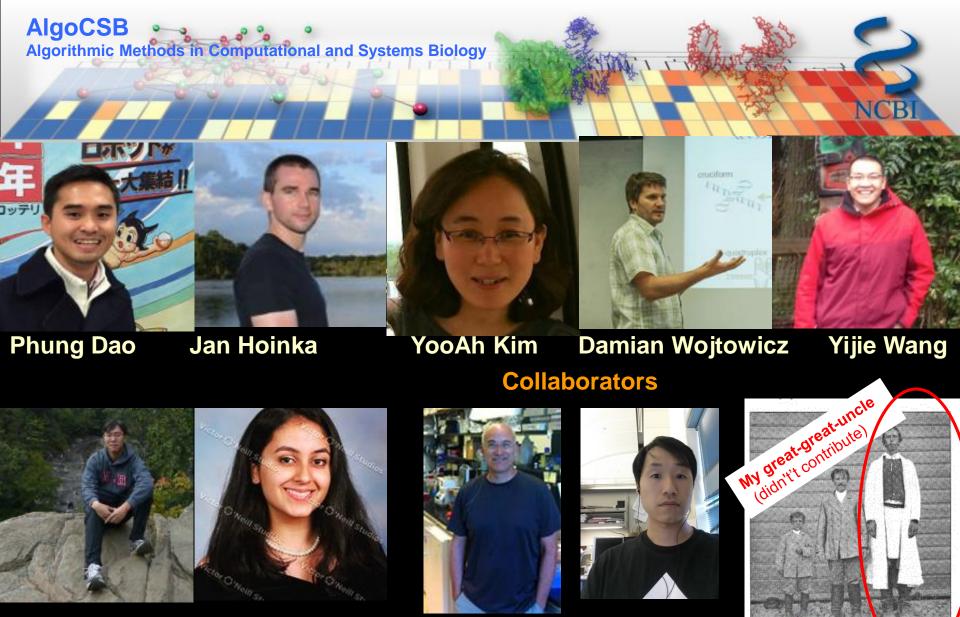
Perturbation flow



mutated / dysregualted subnetworks phenotypic similarity networks

Module-Cover

Topic Model



DongYeon Cho (alumnae)

Sanna Madam Poolesville HS

Brian Oliver

Oliver Hangnoh Lee

Steve Russel, Cambridge Stefan Wuchty, Univ. Miami

(not pictured)

Perturbing a systems brings about valuable lessons

